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A B S T R A C T

In the U.S., states redraw electoral district boundaries every ten years. Given that redistricting affects political
representation at both the state and national levels, it is crucial to prevent the manipulation of district
boundaries for political gain. Optimization methods can be valuable tools for promoting transparency and
fairness in redistricting. Here we examine a novel local search approach for redistricting that transitions
between feasible solutions using Recombination (a recently introduced spanning tree iteration). We compare
the performance of multiple local search heuristics using both Recombination and more traditional Flip
iterations by optimizing congressional plans for Illinois, Missouri, and Tennessee with respect to several
common fairness objectives. We evaluate which heuristic produces the best objective value within limited time
periods and generate collections of optimized plans. The Recombination heuristics produced excellent objective
values, often far superior to the Flip heuristics; they also maintained more compact district shapes when the
objective was not compactness. However, the Flip heuristics converged to a local optimum more quickly and
occasionally achieved better solutions than the ReCom heuristics within short time periods. Hence, while the
use of Recombination within local search frequently improves solution quality, there are some scenarios for
which Flip may be preferable.
. Introduction

Political redistricting in the U.S. can be quite a contentious pro-
ess, with multiple stakeholders vying for competing interests. Often
here is concern about gerrymandering, the manipulation of district
oundaries for political gain (Ricca et al., 2013; Arizona State Legis-
ature v. Arizona Independent Redistricting Commission, 2015). States
n the U.S. redraw their congressional and state legislative district
oundaries every ten years, following a decennial census (National
onference of State Legislatures, 2021c); hence, redistricting (and con-
equently, gerrymandering) can affect political representation for an
ntire decade.

Political redistricting can be viewed as a graph partitioning prob-
em, since it involves dividing a geographic region into nonempty,
airwise disjoint districts. The region to be divided typically consists
f finitely many geographic units (e.g., census blocks), so it is nat-
ral to represent the region with a planar graph. The vertex set of
his planar graph represents the set of geographic units and there
xists an edge between two vertices if and only if the corresponding
wo units are adjacent; a district plan is a partition of this graph
here the parts represent the districts. Typically, the goal of graph
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partitioning problems is to construct parts that optimize some ob-
jective function while adhering to a set of constraints. One example
is minimizing the cut of a partition (i.e., the sum of edge weights
between parts) while satisfying a balance constraint (i.e., all parts have
roughly equal weights) (Bichot and Siarry, 2011). Similarly, a goal of
redistricting may be to minimize district perimeters (to promote district
compactness) while maintaining roughly equal district populations.
Other potential redistricting objectives may quantify district shapes or
political characteristics (e.g., proportionality, competitiveness).

There are several requirements established to standardize political
redistricting and support equity in the redistricting process. Federal
law requires districts to be equi-populous (Wesberry v. Sanders, 1964;
Reynolds v. Sims, 1964) and comply with the Voting Rights Act of
1965; many states impose additional requirements, such as contiguity
or compactness (National Conference of State Legislatures, 2021b).
To minimize potential manipulation by any particular political party
and/or encourage bipartisan cooperation, fifteen states require an inde-
pendent or bipartisan commission to create their congressional and/or
state legislative district plans (National Conference of State Legisla-
tures, 2021a). Several states have also adopted requirements related
vailable online 5 August 2023
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o a district plan’s political characteristics. For example, Missouri and
hio require the expected fraction of state legislative seats won by each
arty to be proportional to their statewide fraction of votes (Mo. Const.
rt. III, §3, 2020; Ohio. Const. art. XI, §6, 2015); Arizona, Colorado,
ew York, and Washington require district elections to be competitive
hen possible (Ariz. Const. art. IV, pt. 2, §3, 2000; Colo. Const. art.
, §44, 2018; N.Y. Const. art. III, §4, 2014; Wash. Const. art. II, §43,
983).

Optimization algorithms can also be useful for supporting fairness in
edistricting. They encourage transparency in the redistricting process,
ince they create district plans based solely on clearly defined objec-
ives, constraints, and parameters. Creating a district plan by trans-
arent means can give insight into the interactions between constitu-
ional requirements, political geography, and political fairness (Dobbs
t al., 2023). However, solving a redistricting optimization problem
xactly is often intractable for realistic instances. For example, balance-
onstrained graph partitioning is NP-hard (Bichot and Siarry, 2011);
istrict plans must be similarly population-balanced and typically in-
olve partitioning thousands of geographic units. District plans typi-
ally must also satisfy contiguity (i.e., the induced subgraph on each
art must be connected) which imposes further computational burden.
olving a redistricting optimization problem becomes increasingly dif-
icult with the incorporation of additional state requirements (Altman
nd McDonald, 2010; DeFord et al., 2021). Hence, redistricting presents
typically intractable problem.

Moreover, even if redistricting problems can be solved tractably,
t is not always clear which objective to optimize, how to balance
ultiple competing objectives, or how to enforce vague or nuanced

equirements (e.g., preserving communities of interest) (Altman and
cDonald, 2010). Nevertheless, with increases in computational power

nd the availability of redistricting data, optimization can be a valuable
ool in the redistricting process. For example, Bozkaya et al. (2011)
pplied optimization heuristics to create electoral districts for the city
f Edmonton, Canada that were signed into law and used in the 2010
unicipal elections.

Even if algorithmically generated plans are not ultimately enacted
s-is, they can demonstrate whether certain redistricting goals are
chievable for a particular state’s constitutional requirements and polit-
cal geography, and promote transparency and public discussion around
he redistricting process (Altman and McDonald, 2010; Validi et al.,
021). Optimization algorithms can also provide map-makers with a
ollection of plans that satisfy basic requirements and possess good po-
itical fairness scores, which map-makers can then choose to implement
irectly or adjust based on more nuanced requirements. Therefore,
realistic goal for redistricting optimization is not to construct the

ingular ‘‘best’’ district plan, but rather create flexible algorithmic
ools that can construct a collection of quantifiably good plans and
xamine the effects of prioritizing different redistricting preferences or
equirements.

Local search, a common optimization meta-heuristic, can be one
uch flexible algorithmic tool for redistricting; in contrast to exact
lgorithms for redistricting, local search has the potential to quickly
mprove a given objective while enforcing multiple constraints. This
aper evaluates local search algorithms for redistricting following the
ntroduction of a new iteration type. Previous local search algorithms
or redistricting use a Flip iteration to transition between district plans
e.g., Ricca and Simeone (2008), Bozkaya et al. (2011) and King
t al. (2018)); each iteration reassigns a single geographic unit on the
order of adjacent districts. However, if the districts are constructed
ith larger units (e.g., census tracts), it may be difficult to move a

ingle unit from one district to another without violating common
edistricting constraints such as population balance; if the districts are
onstructed with smaller units (e.g., census blocks), flipping a single
nit is unlikely to substantially improve the objective. Hence, local
earch with Flip iterations can be ineffective at exploring the solution
2

pace, and therefore often converges to a low quality local optimum.
To allow local search to make substantial changes to a district plan
while maintaining redistricting constraints, we consider Recombination
(ReCom) iterations as an alternative to Flip iterations. ReCom is a
spanning tree method originally introduced for district plan ensemble-
generation (DeFord et al., 2021). While Flip moves one unit per itera-
tion, ReCom frequently exchanges multiple units between two adjacent
districts simultaneously. Exchanging multiple units simultaneously at
each iteration allows ReCom to make substantial changes to district
boundaries while maintaining redistricting constraints such as pop-
ulation balance. Local search with ReCom iterations can therefore
effectively reach a variety of district plans, and consequently can
achieve better objective values than with Flip iterations.

This paper empirically analyzes the performance of simple hill-
climbing, simulated annealing, and greedy local search optimization
algorithms that use ReCom or Flip iterations on the Illinois, Missouri,
and Tennessee congressional redistricting instances. Using these al-
gorithms, we heuristically optimize Illinois, Missouri, and Tennessee
congressional district plans with respect to four common redistricting
metrics (compactness, efficiency gap, mean-median, and competitive-
ness). To assess the potential trade-off between run time and solution
quality, we compare the best objective value that each algorithm
achieves within limited time periods. Then, to evaluate consistency and
robustness, we use each algorithm to generate a collection of plans for
each objective and compare average objective values. In these com-
putational experiments, the ReCom algorithms tended to improve the
objectives more substantially and consistently than the Flip algorithms;
since ReCom iterations can make more substantial changes to district
boundaries than Flip iterations, the ReCom algorithms were able to
more radically reshape the districts or considerably alter their political
composition. Additionally, the ReCom algorithms better maintained
compact districts when the objective was not compactness. However,
it took longer on average for the ReCom algorithms to converge to a
local optimum; in particular, simulated annealing with Flip iterations
occasionally yielded better objective values than the ReCom algorithms
when time was limited.

This paper is organized as follows. Section 2 reviews computational
methods for redistricting. Section 3 describes the redistricting problem,
including fairness objectives, legal constraints, and relevant data for
congressional redistricting in Illinois, Missouri, and Tennessee. Sec-
tion 4 outlines the optimization methods used to construct the plans
that optimize the fairness objectives from Section 3. Lastly, Section 5
analyzes the district plans optimized for each objective and Section 6
provides closing remarks.

2. Related work

There is an extensive body of literature exploring optimization
algorithms and other computational methods for redistricting. Ricca
et al. (2013) and Ricca and Scozzari (2020) review previous work in
this area and Ríos-Mercado (2020) provides a more general review of
recent techniques for districting, zoning, and territory design problems.
Early approaches for redistricting optimization use exact methods,
such as enumeration and integer programming (e.g., Garfinkel and
Nemhauser (1970) and Hess et al. (1965)). For example, Hess et al.
(1965) formulate the basic redistricting problem as a facility-location
integer program with a moment of inertia compactness objective. This
formulation does not include contiguity constraints, so any solutions
obtained may need to be adjusted or discarded. Since this formula-
tion was introduced, several authors have added contiguity constraints
(e.g., Shirabe (2009), Oehrlein and Haunert (2017) and Validi et al.
(2021)); similarly, Arredondo et al. (2021) extend the basic model
to guarantee minority representation. However, the basic redistricting
problem can quickly become intractable for a realistic instance with
thousands of geographic units (even with the helpful MIP techniques
presented in Validi and Buchanan (2022)); hence, realistic problem

instances continue to require heuristics.
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Not only is redistricting typically intractable, it is also nuanced;
t is impractical to precisely model all stakeholder considerations and
references. Previous work tends to focus on optimizing district shapes
i.e., compactness); this focus is natural, since several states require
ompact districts (National Conference of State Legislatures, 2021b)
nd a compactness objective lends itself nicely to clustering algorithms
nd facility location models (e.g., Hess et al. (1965), Validi et al. (2021)
nd Swamy et al. (2022)). However, since several states have adopted
edistricting requirements related to political fairness (National Con-
erence of State Legislatures, 2021b), there is cause to incorporate
olitical fairness objectives into optimization methods for redistricting.
or example, King et al. (2018) use a competitiveness objective within
ocal search and Swamy et al. (2022) model several popular political
airness metrics within a facility location mixed-integer optimization
ramework. This study incorporates various political fairness metrics
efficiency gap, mean-median, and competitiveness) within a novel
ocal search optimization framework.

Local search heuristics using Flip iterations have previously been
pplied to redistricting problems (e.g., Ricca and Simeone (2008),
ozkaya et al. (2011) and King et al. (2018)). Ricca and Simeone
2008) analyze and compare the performance of Flip-iteration local
earch algorithms, such as tabu search, simulated annealing, and old
achelor acceptance, and conclude that these algorithms can quickly
dentify district plans with better objective values than currently en-
cted plans. However, the only constraint enforced at each iteration
s contiguity; other common redistricting criteria such as population
alance, compactness, or conformity to administrative boundaries act
s the objective functions. Choosing instead to enforce these common
edistricting constraints at each iteration would likely prevent a Flip-
teration local search algorithm from reaching a variety of feasible
istrict plans (Chikina et al., 2017; Fifield et al., 2020; DeFord et al.,
021; Cho and Liu, 2021). For example, it may be difficult to move
larger or more populous census tract between two districts without

iolating compactness or population balance. Bozkaya et al. (2011)
imilarly use tabu search and an adaptive memory heuristic with a
ulti-criteria objective function to construct district plans, but their

pplication only involves 400 geographic units. Redistricting for a
tate in the U.S. can involve thousands (if not hundreds of thousands)
f geographic units; therefore, individual Flip iterations may struggle
o substantially alter district shapes or political composition (DeFord
t al., 2021; Cho and Liu, 2021).

To avoid the limitations of Flip iterations, DeFord et al. (2021) intro-
uce Recombination (ReCom), a spanning tree method for transitioning
etween plans within an ensemble-generation algorithm. Similar to
ocal search, ensemble-generation methods for redistricting also depend
n effective solution space exploration (Cho and Liu, 2021; Validi
t al., 2021). The goal of ensemble-generation is to assess whether
he partisan characteristics of a proposed district plan are extreme
ompared to an ensemble of randomly generated district plans. District
lan ensemble-generation has been explored by Chen and Rodden
2013), Liu et al. (2016), Chikina et al. (2017), Fifield et al. (2020),
erschlag et al. (2020), and Cho and Liu (2021).

A ReCom iteration merges the units of two adjacent districts, creates
spanning tree on the induced subgraph of those units, and cuts one

dge of this tree to create two new districts (DeFord et al., 2021).
n contrast to a Flip iteration, a ReCom iteration can completely re-
rrange two adjacent districts by exchanging multiple units between
oth districts simultaneously; hence, ReCom random walks can reach
variety of district plans while maintaining redistricting constraints

uch as population balance. Additionally, ReCom iterations naturally
avor compact districts, since compact districts yield more spanning
rees than snake-like or otherwise convoluted districts (DeFord et al.,
021). Because of these qualities, we consider ReCom iterations within
ocal search optimization algorithms for this study. Since ReCom iter-
tions use larger transition neighborhoods than Flip iterations, local
3

earch can avoid low quality local optima (a concept similar to Very n
Large-Scale Neighborhood Search from Ahuja et al., 2000). Since Re-
Com iterations tend to favor compact districts, we can potentially
circumvent the need for compactness constraints with political fairness
objectives. Dobbs et al. (2023) first use ReCom iterations within local
search optimization to construct congressional and state legislative
district plans for Missouri. However, the focus of that study was to
analyze the partisan impact of Missouri’s political geography and new
constitutional requirements, not to assess the performance of a novel
local search iteration. In contrast, this paper directly compares the
performance of several local search heuristics for redistricting that use
ReCom or Flip iterations.

3. Problem formulation

Redistricting can be viewed as a graph partitioning problem, since
the goal is to divide a region consisting of finitely many geographic
units into districts. We can represent the region as a planar graph
𝐺 = (𝑉 ,𝐸), where the vertex set 𝑉 represents the set of geographic units
and there exists an edge (𝑢, 𝑣) ∈ 𝐸 if and only if the units corresponding
o 𝑢 and 𝑣 share a border segment of positive length. Then a district plan
∶ 𝑉 → [𝐾] is a partition of this graph into 𝐾 parts representing the
istricts. For redistricting optimization, the goal is to solve

min
𝑧∈𝑍𝐾 (𝐺)

𝑓 (𝑧), (1)

here 𝑍𝐾 (𝐺) is the set of all feasible district plans of a given re-
ion (i.e., the set of all feasible 𝐾-partitions of the region’s graph
epresentation 𝐺) and 𝑓 is some redistricting objective (e.g., compact-
ess). Ricca et al. (2013) provide additional details on the history of
his graph-theoretic model for redistricting.

District plans in the U.S. are constructed using geographic units
rom a range of granularities such as census blocks, census block
roups, census tracts, and counties. For example, Illinois has 369,978
ensus blocks, 9898 census block groups, 3265 census tracts, and
02 counties (U.S. Census Bureau, 2020h); Missouri and Tennessee
ave 1654 and 1701 census tracts, respectively. To maintain algorithm
ractability, we construct district plans for Illinois, Missouri, and Ten-
essee using census tracts; these units constitute the vertex set of each
tate’s graph representation. The U.S. Census Bureau provides spatial
ata for these units (U.S. Census Bureau, 2020h). Using geographic
nformation system (GIS) software, it is possible to determine a unit
djacency list; this list constitutes the edge set of each state’s graph
epresentation. Following the 2020 census, Illinois has 17 congressional
istricts, Missouri has 8, and Tennessee has 9 (U.S. Census Bureau,
020a). Therefore, the redistricting problems for Illinois, Missouri, and
ennessee are equivalent to partitioning 3265-node, 1654-node, and
701-node planar graphs into 𝐾 = 17, 𝐾 = 8, and 𝐾 = 9 parts,
espectively.

The Illinois, Missouri, and Tennessee Constitutions impose few or no
dditional requirements for congressional redistricting (beyond the fed-
ral requirements), which allows for a wide range of legally viable plans
and potentially a wide range of fairness scores). Illinois’s congressional
lan from the 2021 redistricting cycle (Illinois House Democrats, 2021)
s an example of a plan that satisfies legal requirements and possesses
xtreme partisan qualities and district shapes. Tennessee’s congres-
ional plan from the 2021 redistricting cycle (State of Tennessee, 2023)
as more reasonable district shapes, but was criticized for cracking
he city of Nashville (CNN, 2022). These three states also represent
range of voting tendencies (as mentioned in Section 3.1) and have

ifferent redistricting instance sizes. Missouri and Tennessee represent
verage-sized U.S. redistricting instances, since the average number of
ongressional districts per state following the 2020 census is 8.7 (U.S.
ensus Bureau, 2020a). In contrast, Illinois is a large-sized instance
hat can demonstrate the power of new local search techniques for
edistricting; only California, Texas, Florida, and New York have more
ongressional districts than Illinois (while Pennsylvania has the same

umber) (U.S. Census Bureau, 2020a).
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The rest of this section describes several common fairness objec-
ives, redistricting constraints, and model details specific to congres-
ional redistricting for Illinois, Missouri, and Tennessee (e.g., voting
ata, ideal district population).

.1. Fairness objectives

There is not a universally accepted definition of ‘‘fairness’’ for redis-
ricting. Some definitions of fairness quantify district shapes or consider
ompetition between candidates. Other definitions examine the packing

and cracking of political parties, where a party is packed if its voters are
concentrated in a few districts where it wins by overwhelming margins,
and cracked if its voters are diluted among several districts (Vieth v.
Jubelirer, 2004). The local search algorithms in this study optimize
district plans with respect to different metrics that quantify these
common notions of fairness; the rest of this subsection describes each
metric. It is important to note that we choose these metrics because
they are thoroughly analyzed in the redistricting literature and are
present in state constitutions or court cases, not because we necessarily
endorse them as ideal measures of fairness. For more information on
the trade-offs between these metrics, see Chen and Rodden (2013),
Bernstein and Duchin (2017), Cho (2017), DeFord et al. (2020), Cain
et al. (2018), DeFord et al. (2023), and Dobbs et al. (2023).

We refer to metrics that rely on election data as political fairness
metrics. Election results are tabulated in voting precincts, which do not
always coincide with census units and may change between elections.
To construct districts with census tracts, we disaggregate precinct-
level votes proportionally to census blocks, then aggregate the votes to
census tracts. This procedure assumes that Democratic and Republican
voters are spread evenly throughout the voting precincts, which might
not be the case. To more accurately represent voter behavior, one could
directly use voting precincts as units to construct district plans (instead
of census tracts). However, voting precincts are often discontiguous,
which may lead to discontiguous districts. For example, the Illinois
voting precincts from 2016, 2018, and 2020 each have 15 precincts
consisting of 10 or more discontiguous parts. In contrast, Illinois has
one census tract in two discontiguous parts, which is straightforward
to process manually (as discussed in Section 3.2.3). To obtain the
precinct-level data needed to produce tract-level estimates according to
this disaggregation procedure, we average votes from the 2016, 2018,
and 2020 general election races for governor, United States Senate,
and President (Voting and Election Science Team, 2021). According
to this set of data and not including any third-party votes, Illinois
voters are approximately 58.5% Democrat and 41.5% Republican, Mis-
souri voters are approximately 46.5% Democrat and 53.5% Republican,
and Tennessee voters are approximately 38.3% Democrat and 61.7%
Republican.

3.1.1. Compactness
A compact district has a simple shape (such as a circle or square, as

in Fig. 1(b)) with no convoluted segments or tendrils (as in Fig. 1(a)).
Maintaining simple district shapes is often viewed as a proxy for
maintaining political fairness, since intentional boundary manipulation
for political gain can result in convoluted district shapes; as an example,
the salamander-shaped Massachusetts district that inspired the term
gerrymander in 1812 was constructed to pack Federalist voters (Griffith,
1907). Additionally, residents in compact districts have more in com-
mon geographically (Duchin and Tenner, 2018). It is important to note
that prioritizing compactness does not guarantee political fairness and
can inadvertently pack geographically clustered political parties (Vieth
v. Jubelirer, 2004; Chen and Rodden, 2013); however, it is a common
requirement in many state constitutions (National Conference of State
Legislatures, 2021b).

There are several ways to quantify district compactness, such as
summing district perimeters, comparing a district’s area and perimeter,
4

summing the distance from each geographic unit to the center of its
district, or counting the number of cut edges in the graph represen-
tation (i.e., edges whose endpoints are in different districts) (Young,
1988; Duchin and Tenner, 2018; DeFord et al., 2021). We measure
compactness as the sum of all cut edges; hence, we calculate the
compactness fairness metric as

𝑓𝑐𝑜𝑚𝑝(𝑧) ∶=
∑

(𝑢,𝑣)∈𝐸
𝐶(𝑢, 𝑣, 𝑧), (2)

here 𝐶(𝑢, 𝑣, 𝑧) is an indicator function that equals one when 𝑧(𝑢) ≠
(𝑣) under district plan 𝑧 and zero otherwise. This metric can be
alculated using unit adjacency information. A convoluted district (such
s Illinois’s third congressional district from the 2021 redistricting cycle
n Fig. 1(a)) contributes a larger number of cut edges to the total sum
han a comparable district with a simpler shape (as in Fig. 1(b)). Hence,
maller values of 𝑓𝑐𝑜𝑚𝑝(𝑧) indicate a district plan whose districts are
ore compact collectively.

.1.2. Efficiency gap
The efficiency gap quantifies packing and cracking by comparing

he percentage of votes wasted by the two parties for a given district
lan. A vote in a particular district is considered wasted if it is cast for
ither the losing party, or the winning party in excess of the 50% it
eeds to win the election. Hence, a packed party wastes votes because
t wins districts by excessive margins and a cracked party wastes
otes because it loses districts by small margins. The efficiency gap
omputes the difference between the percentage of wasted votes for
oth parties (McGhee, 2014; Stephanopoulos and McGhee, 2015):

𝑒𝑔(𝑧) ∶=
∑𝐾

𝑘=1
(

𝑊 𝐴
𝑘 (𝑧) −𝑊 𝐵

𝑘 (𝑧)
)

𝑇
. (3)

Here, 𝑇 is the total number of votes cast for both parties, and 𝑊 𝐴
𝑘 (𝑧)

and 𝑊 𝐵
𝑘 (𝑧) are the number of wasted votes in district 𝑘 under district

plan 𝑧 for parties 𝐴 and 𝐵, respectively. Efficiency gap values closer to
zero indicate that both parties waste a similar number of votes, which
means both parties are packed and cracked to a similar degree. A large
positive (negative) value indicates that party 𝐴 (𝐵) wastes significantly
more votes than party 𝐵 (𝐴). In Section 5, plans are optimized with
respect to the absolute value of the efficiency gap, since the goal is to
minimize bias against either party.

The efficiency gap has grown in popularity for U.S. redistricting
because it is straightforward to calculate and it relies solely on past
election results (not hypothetical election scenarios) (Bernstein and
Duchin, 2017). For example, Missouri passed an amendment in 2020
that requires state legislative district plans to have efficiency gap values
below 15% (Missouri Secretary of State, 2020). In Gill v. Whitford
(2018) the efficiency gap was used to support claims that Wisconsin’s
state house district plan gave Republicans an undue advantage.

As the efficiency gap has grown in popularity, concerns have
emerged regarding what this metric actually measures and how it is ap-
plied. As several authors note, including its creators, the efficiency gap
reduces to a measure of proportionality (i.e., the idea that the fraction
of seats a party wins should be proportional to the fraction of votes that
it wins) (McGhee, 2014; Bernstein and Duchin, 2017; Cho, 2017; War-
rington, 2018). Although proportionality is a widely known concept of
fairness, it is not considered a constitutional right (Davis v. Bandemer,
1986; League of United Latin American Citizens v. Perry, 2006). A
traditional view of proportionality is that parties should win seats at
the same rate that they win votes; in contrast, the efficiency gap favors
a ‘‘winner’s bonus’’ view of proportionality (i.e., for a district plan with
an efficiency gap of zero, parties are expected to win seats at twice
the rate that they win votes) (McGhee, 2014; Bernstein and Duchin,
2017; Cho, 2017; Warrington, 2018). By favoring a winner’s bonus view
of proportionality, the efficiency gap penalizes the traditional view of
proportionality (Chambers et al., 2017; Bernstein and Duchin, 2017).
Additionally, for states with an extremely lopsided partisan split or

very few districts, the efficiency gap may not take on any values that
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Fig. 1. Two examples of district shapes (for roughly the same location and population in the Chicago area).
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sufficiently comply with winner’s bonus proportionality (Bernstein and
Duchin, 2017; Cho, 2017). This metric can also be sensitive to small
changes in voter behavior; if a district plan has multiple competitive
seats, one party might win them all in one election and lose them all in
another election, producing dramatically different efficiency gap values
for different sets of historical data (Bernstein and Duchin, 2017; Cho,
2017).

It is important to emphasize that Stephanopoulos and McGhee
(2015) did not intend for the efficiency gap to be the sole judge of a dis-
trict plan; their proposed doctrine also involved sensitivity analysis (to
account for competitive districts) and examining a state’s political geog-
raphy and redistricting requirements (to account for lopsided partisan
splits or unique geographic factors). Additionally, although proportion-
ality is not a constitutional right, Stephanopoulos and McGhee (2015)
note that the widely accepted goal of partisan gerrymandering is to
‘‘win as many seats as possible given a certain number of votes’’.
Therefore, we include the efficiency gap in this study to encapsulate
the widely held view that equates proportionality with fairness.

3.1.3. Mean-median
As an alternative to measures of proportionality, measures of sym-

metry have also been proposed (e.g., Grofman (1983), Grofman and
King (2007), McDonald and Best (2015) and Katz et al. (2020)). As
summarized in Grofman and King (2007), symmetry ‘‘requires that the
number of seats one party would receive if it garnered a particular
percentage of the vote be identical to the number of seats the other
party would receive if it had received the same percentage of the vote’’.
Measures of symmetry often explicitly rely on a political party’s vote-
seat curve (i.e., a function of the party’s seat-share over all possible
vote-shares), which can be constructed using a hypothetical uniform
partisan swing (i.e., increasing/decreasing the party’s vote-share uni-
formly across all districts) (Grofman and King, 2007; Katz et al., 2020).
Therefore, symmetry broadly examines how the distribution of district
vote-shares affects potential seat outcomes, rather than solely focusing
on the nominal seat outcome. An extremely skewed (i.e., asymmetric)
distribution of district vote-shares suggests that packing and cracking
has occurred.

Despite its presence in the redistricting literature, there are concerns
about symmetry as a standard for redistricting. The first concern is
that symmetry metrics consider hypothetical vote-share scenarios. As
Justice Kennedy stated in League of United Latin American Citizens
v. Perry (2006), ‘‘even assuming a court could choose reliably among
different models of shifting voter preferences, we are wary of adopting
a constitutional standard that invalidates a map based on unfair results
that would occur in a hypothetical state of affairs’’. The second concern
is that symmetry can conflict with proportionality. In their practical
study on symmetry metrics, DeFord et al. (2023) provide several sce-
narios in which a good symmetry score would result in an extremely
disproportionate seat outcome.
5

𝑓

Although the merits of symmetry continue to be debated, we include
the mean-median symmetry metric in this study as an alternative to
proportionality. Mean-median (also called symmetry vote bias) calcu-
lates the difference between the median and mean vote-share across all
districts for one party (the reference party) (McDonald and Best, 2015):

𝑚𝑚(𝑧) ∶= Median{𝐹𝑘(𝑧)} −
1
𝐾

𝐾
∑

𝑘=1
𝐹𝑘(𝑧). (4)

n this formulation, 𝐹𝑘 is the reference party’s vote-share in district 𝑘
nder district plan 𝑧. Note that if each district has the same number
f voters, the mean term in Eq. (4) equals the state-wide vote-share
f the reference party (McDonald and Best, 2015); since voter turnout
aries with changes to a district plan, the mean term varies slightly as
ell. A positive value for 𝑓𝑚𝑚(𝑧) suggests that the reference party can

ecure half of the seats with fewer than half of the votes; a negative
alue suggests that the opposite party has the advantage (McDonald
nd Best, 2015; DeFord et al., 2023). Therefore, values close to zero
re preferred, since they indicate symmetry of voting power between
arties. As with the efficiency gap, the plans in Section 5 are optimized
ith respect to the absolute value of mean-median.

Mean-median offers a well-established history within redistrict-
ng; McDonald and Best (2015) note that district plan analyses have
ncluded comparisons of vote-share means and medians for over a cen-
ury. Additionally, although mean-median does implicitly examine how
he distribution of district vote-shares affects potential seat outcomes,
omputing this metric does not require the explicit generation and
xamination of hypothetical vote-share scenarios.

.1.4. Competitiveness
Fairness toward political parties does not always align with fairness

oward voters. Political parties or incumbents may desire guaranteed
istrict wins (i.e., safe seats); in contrast, voters may desire competitive
istricts to feel like their vote truly affects the election outcome, to
iscourage candidate complacency, and to encourage candidates to
ooperate in a bipartisan manner (Abramowitz et al., 2006; McCarty
t al., 2009; DeFord et al., 2020). Arizona, Colorado, New York, and
ashington require competitive congressional districts when possi-

le (Ariz. Const. art. IV, pt. 2, §3, 2000; Colo. Const. art. V, §44, 2018;
.Y. Const. art. III, §4, 2014; Wash. Const. art. II, §43, 1983). However,
s DeFord et al. (2020) note in their analysis of competitiveness, there
s not a universally accepted competitiveness metric. Increasing the
umber of competitive districts might unintentionally crack one party
r cause packing in the remaining, non-competitive districts (Swamy
t al., 2022). Reducing the political imbalance in each district can
ecrease packing, but also cause the district vote-shares to homoge-
eously mirror the statewide vote-shares (King et al., 2018). Despite
he acknowledged shortcomings, we measure the competitiveness of a
istrict plan as the number of competitive districts; hence, we calculate
he competitive fairness metric as:
𝑐𝑚𝑝𝑡𝑡𝑣(𝑧) ∶= |{𝑘 ∈ [𝐾] ∶ 𝑀𝑘(𝑧) ≤ 0.07}|, (5)
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here 𝑀𝑘(𝑧) is the difference between the winning party’s expected
ote-share and the losing party’s expected vote-share in district 𝑘 under
istrict plan 𝑧 (i.e., the expected margin of victory). Here, a compet-
tive district is defined as a district within a 7% margin of victory
i.e., the election is expected to be at least as close as 46.5%–53.5%).
ast studies have used a looser threshold of 10% to define a competitive
istrict (e.g., Abramowitz et al. (2006) and DeFord et al. (2020)); we
hoose 7% because the Arizona Independent Redistricting Commission
ecently used this threshold in practice to construct congressional dis-
rict plans for Arizona (Arizona Independent Redistricting Commission,
021).

.2. Redistricting constraints

This subsection characterizes the set of feasible congressional dis-
rict plans (i.e., 𝑍𝐾 (𝐺) from Eq. (1)) for Illinois, Missouri, and Ten-
essee. The U.S. Constitution requires congressional districts to have
early equal populations and satisfy the Voting Rights Act of 1965 (Na-
ional Conference of State Legislatures, 2021b). The Illinois and Ten-
essee Constitutions do not impose additional requirements for con-
ressional redistricting; the Missouri Constitution requires congres-
ional districts to be contiguous and compact (Mo. Const. art. III, §45,
945). Although not required by Illinois and Tennessee, we enforce
ontiguity for all three states. This decision aligns with redistricting
ractice following the 2000, 2010, and 2020 censuses, since the Illinois
ongressional districts are all contiguous and all discontiguous districts
n the Tennessee congressional plans result from discontiguous census
nits (U.S. Census Bureau, 2020h). Similarly, we also enforce a com-
actness constraint for all three states to prevent Flip iterations from
reating fractal-like district shapes that inflate district perimeters when
he objective is not compactness (DeFord et al., 2020, 2021). Below we
escribe all requirements.

.2.1. Population balance
The ideal district population is the total state population divided

y the number of districts. The population balance constraint can be
ritten as

1 − 𝛿)𝑃 ≤ 𝑃𝑘(𝑧) ≤ (1 + 𝛿)𝑃 for 𝑘 = 1, 2,… , 𝐾, (6)

here 𝑃 is the ideal district population, 𝛿 ≥ 0 is the allowed population
deviation, and 𝑃𝑘(𝑧) is the population of district 𝑘 under district plan
𝑧. The U.S. Census Bureau provides population counts for geographic
units from the 2020 decennial census that can be used to compute
district populations (U.S. Census Bureau, 2020e,f,g).

Congressional district populations must be as close to the ideal pop-
ulation as possible (Wesberry v. Sanders, 1964); in practice, congres-
sional districts typically deviate from the ideal district population by
at most one person (National Conference of State Legislatures, 2021b).
ince we construct district plans with census tracts and not census
locks (the finest granularity of census unit), single-person population
alance is not readily achievable. For this reason, we allow district
opulations to deviate by at most 1% from the ideal population (i.e., we
et 𝛿 = 0.01 in Eq. (6)). This allowed deviation is small enough that the
ptimized plans could then be manually tuned to single-person popula-
ion balance without substantially changing district shapes or political
airness (DeFord et al., 2021). Table 1 shows the total populations, ideal
istrict populations, and allowed district population deviations under a
% population balance for Illinois, Missouri, and Tennessee.

.2.2. Voting Rights Act
To satisfy the Voting Rights Act of 1965, states construct majority–

minority districts (i.e., districts in which less than half of the population
s non-Hispanic white) (Ballotpedia, 2017). Following the 2021 redis-
6

ricting cycle, Illinois’s congressional plan has five majority–minority l
Table 1
Population information for the Illinois, Missouri, and Tennessee congressional
redistricting instances.

State Total population Ideal district
population

Allowed deviation
under 1%
population balance

Illinois 12,812,508 753,677 ±7536
Missouri 6,154,913 769,364 ±7693
Tennessee 6,910,840 767,871 ±7678

districts in the Chicago area: three districts with Black/African Ameri-
can majorities/pluralities and two districts with Latino/Hispanic ma-
jorities/pluralities (Illinois House Democrats, 2021). Missouri’s and
Tennessee’s congressional plans each have one district with a Black/
African American majority/plurality. To match the number of majority–
minority districts in these plans, we require the Missouri and Tennessee
plans in this study to each have one plurality-Black/African Amer-
ican majority–minority district and the Illinois plans to have three
plurality-Black/African American and two plurality-Latino/Hispanic
majority–minority districts. Hence, the Voting Rights Act constraints
can be written as
𝐾
∑

𝑘=1
𝐵𝑘(𝑧) = 3,

𝐾
∑

𝑘=1
𝐿𝑘(𝑧) = 2 (7)

for Illinois and as
𝐾
∑

𝑘=1
𝐵𝑘(𝑧) = 1 (8)

or Missouri and Tennessee. Here, 𝐵𝑘(𝑧) and 𝐿𝑘(𝑧) are indicator func-
ions that equal one when district 𝑘 under district plan 𝑧 is a
lack/African American or Latino/Hispanic plurality district, respec-
ively, and zero otherwise. To enforce this constraint, we use race/
thnicity data from the 2020 decennial census (U.S. Census Bureau,
020b,c,d,e,f,g). It is important to note that the creation of majority–
inority districts in practice involves a more nuanced consideration

f the historical and current discrimination facing particular minor-
ty groups, their geographical compactness, and their political cohe-
ion (Thornburg v. Gingles, 1986). Although we do not examine these
actors in our model, matching the number of majority–minority dis-
ricts with particular pluralities in the current congressional plans pro-
ides one step toward including the Voting Rights Act in redistricting
ptimization.

.2.3. Contiguity
Although not explicitly required by the Illinois and Tennessee Con-

titutions, we enforce district plan contiguity (i.e., we require the
nduced subgraph on each part of the partition to be connected). This
onstraint can be written as

𝑘(𝑧) = 1 for 𝑘 = 1, 2,… , 𝐾, (9)

here 𝑌𝑘(𝑧) is an indicator function that equals one when district 𝑘 is
ontiguous under district plan 𝑧 and zero otherwise.

Section 4.1 explains how each Flip and ReCom iteration maintains
raphical contiguity (i.e., how it ensures that the induced subgraph
n each part of the partition remains connected after an iteration).
o ensure that this graphical contiguity translates to visual contiguity

n the optimized district boundaries, the individual census tracts that
onstitute the vertex set of each state’s graph representation must be
ontiguous. Missouri does not have any discontiguous census tracts.
owever, Illinois has one census tract (GEOID20 17167003603) that con-

sists of two discontiguous parts; one of the parts is small (a single census
block), with zero population. Similarly, Tennessee has five discontigu-
ous census tracts (GEOID20s 47037015635, 47043060201, 47105060700,
47167040100, and 47185935000); for each of these tracts, one part is

arge and the remaining parts are small with little to no population.
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sing GIS software, we treat these small parts as though they were
nnexed to adjacent tracts. After this pre-processing step, all census
racts are contiguous. Note that due to this pre-processing step, the
ptimized plans may separate the different parts of these tracts. We also
o not include Illinois’s two large water-only census tracts that cover
ake Michigan (GEOID20s 17031990000 and 17097990000). Excluding

these tracts prevents a scenario in which a Chicago-area district con-
sists of discontiguous population clusters ‘‘connected’’ by a large Lake
Michigan tract. Lastly, Illinois, Missouri, and Tennessee have 15, 13,
and 3 census tracts, respectively, that completely surround other tracts.
To effectively execute Flip iterations, we merge these tracts with the
tracts they surround. Since none of the surrounded tracts have sufficient
population for an entire district, this merging does not alter the feasible
solution space. Merging allows a Flip iteration to change the district
membership of these surrounding tracts; without merging, any attempt
to reassign one of these tracts will violate contiguity. ReCom iterations
do not have this issue, since the formation of a spanning tree will reach
every tract (although merging surrounded tracts would slightly reduce
the time it takes to form/evaluate a spanning tree).

3.2.4. Compactness
When using a political fairness objective, we also impose a compact-

ness threshold, set at 1.2 times the number of cut edges in the initial
plan. In other words, given the initial plan 𝑧̂, we enforce:

𝑓𝑐𝑜𝑚𝑝(𝑧) ≤ 1.2 × 𝑓𝑐𝑜𝑚𝑝(𝑧̂). (10)

his constraint prevents Flip iterations from creating extremely con-
oluted district shapes when the objective is not compactness. As
entioned in Section 2, ReCom iterations naturally favor compact
istrict shapes, so this constraint should be less necessary when using
eCom iterations. However, we apply the constraint regardless of itera-

ion type for the sake of a controlled comparison. Section 5.4 discusses
ow optimizing a political fairness metric affects compactness for each
teration type based on empirical data.

. Methodology

The goal of this study is to compare the performance of several
ocal search heuristics for redistricting that use either Flip or ReCom
terations. This section describes the algorithms we use to generate
istrict plans and the experimental design we use to gather data.

.1. Local search algorithms

A local search algorithm for redistricting begins with a feasible
istrict plan, then improves an objective by transitioning between
easible plans with a sequence of local changes to district boundaries.
his subsection describes the seven algorithms that we use in our ex-
eriments. Simple Flip and Simple ReCom are simple hill-climbing local
earch algorithms; SA Flip and SA ReCom are simulated annealing local
earch algorithms; Greedy Flip and Greedy ReCom are greedy local
earch algorithms; lastly, Sample ReCom is a sampling algorithm. We
mplement these algorithms because they are based on common local
earch variants or sampling methods (e.g., as in Ricca and Simeone
2008) and DeFord et al. (2020, 2021)).

The Flip algorithms transition between feasible plans with Flip
terations. Each Flip iteration is based on one or more Flip proposals,
n which the algorithm selects a single geographic unit and evaluates
ow moving this unit from its current district to an adjacent district
ffects the constraints and objective. The three Flip-based algorithms
iffer in how many Flip proposals are created per iteration and when
hey are accepted. Simple Flip (Algorithm 1) creates one Flip proposal
er iteration and accepts it if the resulting plan satisfies the constraints
nd does not worsen the objective. SA Flip (Algorithm 2) operates
imilarly, but allows moves that worsen the objective according to a
7

robability that decreases as the algorithm runs. Occasionally allowing a
Algorithm 1: A Single Iteration of Simple Flip
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, and a feasible district plan 𝑧
Output: A feasible district plan 𝑧̂

1 Choose a node/district pair (𝑢, 𝑘2) uniformly at random such that 𝑢 is adjacent to 𝑘2 and
𝑧(𝑢) = 𝑘1 ≠ 𝑘2 .

2 Define a district plan 𝑧(𝑣) =

{

𝑘2 , if 𝑣 = 𝑢
𝑧(𝑣), otherwise

3 Acceptable = CheckConstraintsObjective(𝐺,𝐶, 𝑓 , 𝑧)
4 // See Sections 3.1 and 3.2 for examples of objectives/constraints to

check.
5 if Acceptable then
6 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
7 else
8 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
9 end
10 return 𝑧̂

Algorithm 2: A Single Iteration of SA Flip
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, a feasible district plan 𝑧, and SA

parameters 𝑇 and 𝛽
Output: A feasible district plan 𝑧̂ and SA parameter 𝑇

1 Choose a node/district pair (𝑢, 𝑘2) uniformly at random such that 𝑢 is adjacent to 𝑘2 and
𝑧(𝑢) = 𝑘1 ≠ 𝑘2 .

2 Define a district plan 𝑧(𝑣) =

{

𝑘2 , if 𝑣 = 𝑢
𝑧(𝑣), otherwise

3 Feasible = CheckConstraints(𝐺,𝐶, 𝑧)
4 // See Section 3.2 for examples of constraints to check.
5 Improve = CheckObjective(𝐺, 𝑓 , 𝑧)
6 // See Section 3.1 for examples of objectives to check.
7 if Feasible and Improve then
8 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
9 else
10 Let 𝑢 be a 𝑈 (0, 1) variate.

11 if Feasible and not Improve and 𝑢 < 𝑒−
|𝑓 (𝑧)−𝑓 (𝑧)|

𝑇 then
12 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
13 Set 𝑇 = 𝛽𝑇 .
14 else
15 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
16 end
17 end
18 return 𝑧̂, 𝑇

Algorithm 3: A Single Iteration of Greedy Flip
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, and a feasible district plan 𝑧
Output: A feasible district plan 𝐵𝑒𝑠𝑡

1 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
2 for node-district pairs (𝑢, 𝑘2) such that 𝑢 is adjacent to 𝑘2 and 𝑧(𝑢) = 𝑘1 ≠ 𝑘2 do

3 Define a district plan 𝑧(𝑣) =

{

𝑘2 , if 𝑣 = 𝑢
𝑧(𝑣), otherwise

4 Acceptable = CheckConstraintsObjective(𝐺,𝐶, 𝑓 , 𝑧)
5 // See Sections 3.1 and 3.2 for examples of objectives/constraints to

check.
6 if Acceptable and |𝑓 (𝑧) − 𝑓 (𝑧)| > |𝑓 (𝐵𝑒𝑠𝑡) − 𝑓 (𝑧)| then
7 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
8 else
9 Let 𝑢 be a 𝑈 (0, 1) variate.
10 if Acceptable and |𝑓 (𝑧) − 𝑓 (𝑧)| = |𝑓 (𝐵𝑒𝑠𝑡) − 𝑓 (𝑧)| and 𝑢 < 0.5 then
11 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉
12 end
13 end
14 end
15 return 𝐵𝑒𝑠𝑡

the objective to worsen can allow the algorithm to explore more of the
solution space; this algorithm always outputs the best solution found
during its run (which is not necessarily the last solution it found). We
experimentally calibrate the initial temperature (𝑇0), cooling rate (𝛽),
nd threshold (𝜂) simulated annealing parameters for SA Flip based
n the four different objectives and list these parameter values in Ta-
le 2. The parameters 𝑇0 and 𝛽 determine the acceptance probabilities
nd 𝜂 determines algorithm termination; see Kirkpatrick et al. (1983)
nd Ricca and Simeone (2008) for more information on simulated
nnealing and its parameters. Greedy Flip (Algorithm 3) evaluates all
ossible Flip proposals and accepts one that satisfies the constraints and
ields the best objective improvement. When Greedy Flip is evaluating
he Flip proposals, if it encounters one that yields the same objective
mprovement as the current best proposal, it decides randomly whether
r not to replace the current best proposal with the new proposal.

Each ReCom algorithm transitions between feasible plans with Re-
om iterations. As with the Flip algorithms, each ReCom iteration is
ased on one or more ReCom proposals, in which the algorithm creates

spanning tree on the induced subgraph of two adjacent districts, then
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lgorithm 4: A Single Iteration of Simple ReCom
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, a feasible district plan 𝑧, and a

max number of spanning tree attempts 𝑀
Output: A feasible district plan 𝑧̂

1 Choose an edge (𝑢, 𝑣) uniformly at random such that 𝑧(𝑢) = 𝑘1 ≠ 𝑘2 = 𝑧(𝑣).
2 Let 𝐻 be the induced subgraph on the nodes of 𝑘1 ∪ 𝑘2 .
3 Let ValidEdges = ∅ and Attempts = 0.
4 while ValidEdges = ∅ and Attempts < 𝑀 do
5 Set 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + 1.
6 Form a spanning tree 𝑇 of 𝐻 .
7 for edge in 𝑇 do
8 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.
9 Balanced = CheckPopulationBalance(𝑇1 , 𝑇2)
10 // Check if this cut satisfies population balance (Equation (6)).
11 if Balanced then
12 Add 𝑒𝑑𝑔𝑒 to 𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.
13 end
14 end
15 end
16 if ValidEdges = ∅ then
17 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
18 else
19 Choose an edge uniformly at random from ValidEdges.
20 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.

21 Define a district plan 𝑧(𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑘1 , if 𝑤 ∈ 𝑇1
𝑘2 , if 𝑤 ∈ 𝑇2
𝑧(𝑤), otherwise

22 Acceptable = CheckConstraintsObjective(𝐺,𝐶, 𝑓 , 𝑧)
23 // See Sections 3.1 and 3.2 for examples of objectives/constraints to

check.
24 if Acceptable then
25 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
26 else
27 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
28 end
29 end
30 return 𝑧̂

lgorithm 5: A Single Iteration of SA ReCom
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, a feasible district plan 𝑧, a max

number of spanning tree attempts 𝑀 , and SA parameters 𝑇 and 𝛽
Output: A feasible district plan 𝑧̂ and SA parameter 𝑇

1 Choose an edge (𝑢, 𝑣) uniformly at random such that 𝑧(𝑢) = 𝑘1 ≠ 𝑘2 = 𝑧(𝑣).
2 Let 𝐻 be the induced subgraph on the nodes of 𝑘1 ∪ 𝑘2 .
3 Let ValidEdges = ∅ and Attempts = 0.
4 while ValidEdges = ∅ and Attempts < 𝑀 do
5 Set 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + 1.
6 Form a spanning tree 𝑇 of 𝐻 .
7 for edge in 𝑇 do
8 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.
9 Balanced = CheckPopulationBalance(𝑇1 , 𝑇2)
10 // Check if this cut satisfies population balance (Equation (6)).
11 if Balanced then
12 Add 𝑒𝑑𝑔𝑒 to 𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.
13 end
14 end
15 end
16 if ValidEdges = ∅ then
17 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
18 else
19 Choose an edge uniformly at random from ValidEdges.
20 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.

21 Define a district plan 𝑧(𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑘1 , if 𝑤 ∈ 𝑇1
𝑘2 , if 𝑤 ∈ 𝑇2
𝑧(𝑤), otherwise

22 Feasible = CheckConstraints(𝐺,𝐶, 𝑧)
23 // See Section 3.2 for examples of constraints to check.
24 Improve = CheckObjective(𝐺, 𝑓 , 𝑧)
25 // See Section 3.1 for examples of objectives to check.
26 if Feasible and Improve then
27 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
28 else
29 Let 𝑢 be a 𝑈 (0, 1) variate.

30 if Feasible and not Improve and 𝑢 < 𝑒−
|𝑓 (𝑧)−𝑓 (𝑧)|

𝑇 then
31 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
32 Set 𝑇 = 𝛽𝑇 .
33 else
34 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
35 end
36 end
37 end
38 return 𝑧̂, 𝑇

hooses an edge to cut in this tree from the set of edges that produce
wo new population-balanced districts when cut (DeFord et al., 2021).
he algorithm then evaluates how this change in district boundaries af-
ects the constraints and objective. Simple ReCom (Algorithm 4) creates
ne ReCom proposal per iteration, choosing a population-balanced cut
niformly at random. As with Simple Flip, this ReCom proposal is ac-
epted if the two new districts satisfy all constraints and do not worsen
he objective. SA ReCom (Algorithm 5) is analogous to SA Flip; Table 2
ists the initial temperature, cooling rate, and threshold parameters we
8

Algorithm 6: A Single Iteration of Greedy ReCom
Input: A graph 𝐺 = (𝑉 ,𝐸), an objective 𝑓 , a constraint set 𝐶, a feasible district plan 𝑧, a max

number of spanning tree attempts 𝑀 , and a required number of spanning trees 𝑡
Output: A feasible district plan 𝐵𝑒𝑠𝑡

1 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
2 Let 𝑁𝑢𝑚𝑇 𝑟𝑒𝑒𝑠 = 0.
3 Let 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = ∅.
4 while NumTrees < 𝑡 do
5 Choose an edge (𝑢, 𝑣) uniformly at random such that 𝑧(𝑢) = 𝑘1 ≠ 𝑘2 = 𝑧(𝑣).
6 Let 𝐻 be the induced subgraph on the nodes of 𝑘1 ∪ 𝑘2 .
7 Let ValidEdges = ∅ and Attempts = 0.
8 while ValidEdges = ∅ and Attempts < 𝑀 do
9 Set 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + 1.
10 Form a spanning tree 𝑇 of 𝐻 .
11 for edge in 𝑇 do
12 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.
13 Balanced = CheckPopulationBalance(𝑇1 , 𝑇2)
14 // Check if this cut satisfies population balance (Equation

(6)).
15 if Balanced then
16 Add 𝑒𝑑𝑔𝑒 to 𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.
17 end
18 end
19 end
20 if ValidEdges ≠ ∅ then
21 Set 𝑁𝑢𝑚𝑇 𝑟𝑒𝑒𝑠 = 𝑁𝑢𝑚𝑇 𝑟𝑒𝑒𝑠 + 1.
22 for edge in ValidEdges do
23 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.

24 Define a district plan 𝑧(𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑘1 , if 𝑤 ∈ 𝑇1
𝑘2 , if 𝑤 ∈ 𝑇2
𝑧(𝑤), otherwise

25 Add 𝑧 to 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.
26 end
27 end
28 end
29 for 𝑧 in Candidates do
30 Acceptable = CheckConstraintsObjective(𝐺,𝐶, 𝑓 , 𝑧)
31 // See Sections 3.1 and 3.2 for examples of objectives/constraints to

check.
32 if Acceptable and |𝑓 (𝑧) − 𝑓 (𝑧)| > |𝑓 (𝐵𝑒𝑠𝑡) − 𝑓 (𝑧)| then
33 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
34 else
35 Let 𝑢 be a 𝑈 (0, 1) variate.
36 if Acceptable and |𝑓 (𝑧) − 𝑓 (𝑧)| = |𝑓 (𝐵𝑒𝑠𝑡) − 𝑓 (𝑧)| and 𝑢 < 0.5 then
37 Set 𝐵𝑒𝑠𝑡(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉
38 end
39 end
40 end
41 return 𝐵𝑒𝑠𝑡

Algorithm 7: A Single Iteration of Sample ReCom (DeFord et al., 2021)
Input: A graph 𝐺 = (𝑉 ,𝐸), a constraint set 𝐶, a feasible district plan 𝑧, and a max number of

spanning tree attempts 𝑀
Output: A feasible district plan 𝑧̂

1 Choose an edge (𝑢, 𝑣) uniformly at random such that 𝑧(𝑢) = 𝑘1 ≠ 𝑘2 = 𝑧(𝑣).
2 Let 𝐻 be the induced subgraph on the nodes of 𝑘1 ∪ 𝑘2 .
3 Let ValidEdges = ∅ and Attempts = 0.
4 while ValidEdges = ∅ and Attempts < 𝑀 do
5 Set 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 = 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 + 1.
6 Form a spanning tree 𝑇 of 𝐻 .
7 for edge in 𝑇 do
8 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.
9 Balanced = CheckPopulationBalance(𝑇1 , 𝑇2)
10 // Check if this cut satisfies population balance (Equation (6)).
11 if Balanced then
12 Add 𝑒𝑑𝑔𝑒 to 𝑉 𝑎𝑙𝑖𝑑𝐸𝑑𝑔𝑒𝑠.
13 end
14 end
15 end
16 if ValidEdges = ∅ then
17 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
18 else
19 Choose 𝑒𝑑𝑔𝑒 uniformly at random from ValidEdges.
20 Set (𝑇1 , 𝑇2) = 𝑇 ∖𝑒𝑑𝑔𝑒.

21 Define a district plan 𝑧(𝑤) =

⎧

⎪

⎨

⎪

⎩

𝑘1 , if 𝑤 ∈ 𝑇1
𝑘2 , if 𝑤 ∈ 𝑇2
𝑧(𝑤), otherwise

22 Acceptable = CheckConstraints(𝐺,𝐶, 𝑧)
23 // See Section 3.2 for examples of constraints to check.
24 if Acceptable then
25 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
26 else
27 Let 𝑧̂(𝑣) = 𝑧(𝑣) for each 𝑣 ∈ 𝑉 .
28 end
29 end
30 return 𝑧̂

used. The definition of Greedy ReCom (Algorithm 6) differs slightly
from Greedy Flip. A typical greedy local search algorithm (e.g., Greedy
Flip) evaluates all possible proposals and accepts one that is feasible
with the best objective improvement. A greedy local search algorithm
with ReCom iterations that is truly analogous to Greedy Flip would con-
sider all population-balanced cuts of all spanning trees for all pairs of
adjacent districts; performing a single iteration would be prohibitively
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nitial temperature (𝑇0), cooling rate (𝛽), and threshold (𝜂) simulated annealing

parameters for SA Flip and SA ReCom, for each objective.
Algorithm Objective 𝑇0 𝛽 𝜂

SA Flip Compactness 2 0.999 0.4
Efficiency Gap 0.01 0.99 0.0001
Mean-Median 0.005 0.999 0.00005
Competitiveness 1.5 0.9 0.5

SA ReCom Compactness 5 0.98 0.9
Efficiency Gap 0.01 0.9 0.0015
Mean-Median 0.005 0.85 0.0001
Competitiveness 0.5 0.8 0.25

ig. 2. An example region with 20 units partitioned into two districts of equal size.
Allowing single-unit deviation from the ideal district size of 10, there are 10 Simple
Flip neighbors and 727 Simple ReCom neighbors from this district plan.

expensive. Therefore, to maintain computational tractability, Greedy
ReCom instead considers multiple ReCom proposals for one pair of ad-
jacent districts. Greedy ReCom generates 𝑡 spanning trees that have at
least one population-balanced cut, checks all population-balanced cuts
from all 𝑡 trees, and accepts one that satisfies all constraints and yields
the best objective improvement (as with Greedy Flip, ties are broken
randomly). In our experiments, we set 𝑡 = 2. Lastly, Sample ReCom
(Algorithm 7) transitions between feasible plans without considering
any objective (i.e., performs a ReCom random walk, as in DeFord et al.
(2021)).

Given a feasible district plan, consider the size of its local search
neighborhood using the Flip and ReCom algorithms. While each it-
eration type results in a boundary change for two adjacent districts,
the size of their neighborhoods can substantially differ based on the
iteration type. For example, the number of neighbors using Simple
Flip is equal to the number of units that are on the border between
two adjacent districts (i.e., border nodes). Using Simple ReCom, the
number of neighbors is equal to the number of contiguous, population-
balanced bipartitions of the induced subgraph on two adjacent districts.
Hence, the feasible Simple Flip neighborhood is a subset of the feasible
Simple ReCom neighborhood, and the latter is typically much larger in
practice. For example, Fig. 2 shows a two-district plan for a simple 4 × 5
grid graph that has 727 Simple ReCom neighbors, but only 10 Simple
Flip neighbors (under a population balance constraint that requires
each district to contain between 9 and 11 units).

It is important to note that we define ‘‘improving moves’’ for these
local search algorithms as moves that do not worsen the objective, rather
than as moves that strictly improve the objective. Objectives such as
compactness, efficiency gap, and mean-median are sensitive enough
that swapping a single unit between districts can change their values.
However, a competitiveness objective (as measured by the number of
competitive seats) might not change even with multiple unit swaps.
Therefore, to encourage exploration of the solution space, improving
moves are those that strictly improve or maintain the current objective
value. DeFord et al. (2020) implement a similar acceptance rule when
they examine competitiveness metrics.

When the Flip algorithms (Algorithms 1–3) choose a unit-district
pair (𝑢, 𝑘2), they must check whether moving unit 𝑢 to district 𝑘2
rom its current district 𝑘1 creates a feasible plan and determine the
ew objective value. Population balance, majority–minority districts,
nd compactness are straightforward to check. One can subtract the
opulation of unit 𝑢 from its original district 𝑘1, add it to district 𝑘2,

𝑃 . Racial/ethnic group
9

hen calculate the new percent deviations from
district populations can be modified in a similar manner. The total
number of cut edges can be modified based on the edges between unit
𝑢 and districts 𝑘1 and 𝑘2.

The political fairness metrics can also be updated efficiently after
unit 𝑢 is transferred. Updating votes in both districts is similar to
updating population; once the votes are updated, one can recalculate a
political fairness objective. To quickly recalculate the efficiency gap, we
maintain a running tally of wasted votes for each party in each district.
Hence, one can use the updated votes to recalculate the wasted votes
in districts 𝑘1 and 𝑘2 (i.e., 𝑊 𝐷𝑒𝑚

𝑘1
(𝑧), 𝑊 𝑅𝑒𝑝

𝑘1
(𝑧), 𝑊 𝐷𝑒𝑚

𝑘2
(𝑧), and 𝑊 𝑅𝑒𝑝

𝑘2
(𝑧)

rom Eq. (3)). For mean-median, one can use the updated votes to
alculate the reference party’s vote-shares in 𝑘1 and 𝑘2 (i.e., 𝐹𝑘1 (𝑧)
nd 𝐹𝑘2 (𝑧) in Eq. (4)), after which the mean and median vote-share
an be recalculated. To determine if this transition creates/eliminates
competitive district, one can similarly use the new party vote-shares

n 𝑘1 and 𝑘2 to calculate the expected margins of victory in 𝑘1 and 𝑘2
i.e., 𝑀𝑘1 (𝑧) and 𝑀𝑘2 (𝑧) in Eq. (5)).

Checking contiguity is more challenging. To simplify the check, we
aintain a record of border nodes. Since Algorithms 1–3 explicitly

hoose a district 𝑘2 that is adjacent to border node 𝑢, it is guaranteed
hat district 𝑘2 remains contiguous after receiving 𝑢. Therefore, it is
nly necessary to check that 𝑘1 remains contiguous after removing 𝑢. To
uickly evaluate a candidate move for contiguity, we use the hole-free
eo-graph method introduced by King et al. (2012). This method relies
n the augmented neighborhood of unit 𝑢, 𝑅(𝑢) (i.e., any unit that shares
oundary segments or isolated points with 𝑢) to reduce computation

time. Note that |𝑅(𝑢)| ≥ |𝑁(𝑢)|. To use this method, we additionally
require that district plans optimized with the Flip algorithms remain
hole-free (i.e., we forbid any district from completely surrounding
another district).

To implement ReCom iterations for Algorithms 4–7, we use the
open-source GerryChain Python package (Voting Rights Data Institute,
2018). Just as the Flip implementation maintains a record of border
nodes, the ReCom implementation maintains a record of cut edges.
Each ReCom iteration chooses two adjacent districts to merge and
repartition by selecting a cut edge uniformly at random. To create
a spanning tree on the induced subgraph of two adjacent districts,
GerryChain uses Kruskal’s algorithm with randomized edge weights,
then selects a root uniformly at random from the set of vertices with
degree greater than one. To find population-balanced cuts of this
spanning tree, GerryChain implements a memoization procedure: for
each node in the tree (beginning with the leaves), the population of
the subtree rooted at that node is recorded and checked for population
balance. Here a subtree only passes the population balance check if
its population and the population of its complement in the spanning
tree are within the acceptable population deviation. If the spanning tree
does not yield any population-balanced cuts, the algorithm draws a new
spanning tree; we limit the number of spanning trees to 250. Note that
we report this process as a single iteration in Section 5, even if more
than one spanning tree is drawn.

Next, the ReCom algorithms must check whether this candidate plan
satisfies all other constraints and determine the new objective value.
Note that contiguity is automatically preserved, since the two new
districts result from cutting exactly one edge of a spanning tree. Ger-
ryChain identifies which units have changed district assignments, re-
computes district totals for racial/ethnic group populations and votes/
vote-shares, identifies which edges are no longer cut edges, and iden-
tifies which edges have become cut edges. With these updates, the
ReCom algorithms can check that majority–minority districts are main-
tained and recalculate the four fairness objectives.

It is clear to see that a single Flip iteration has a faster time
complexity than a single ReCom iteration. The time complexity of Flip
operations largely depends on the size of a unit’s augmented neigh-
borhood |𝑅(𝑢)| or the number of districts 𝐾 (e.g., checking contiguity
is 𝑂(|𝑅(𝑣)|) time, updating mean-median is 𝑂(𝐾) time), while the

time complexity of ReCom operations largely depends on the size of
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t
he induced subgraph of the two merged districts 𝐻 (e.g., creating
a spanning tree on the planar subgraph 𝐻 is 𝑂(𝑉 [𝐻] log𝑉 [𝐻]) time,
memoizing subtree populations is 𝑂(𝑉 [𝐻]) time). As Section 5 con-
firms, the slower time complexity of ReCom iterations translates to a
slower run time for realistic redistricting instances. However, as DeFord
et al. (2021) emphasize, this increase in computational effort comes
with more effective solution space exploration. Section 5 shows that
the ReCom algorithms frequently produce district plans with higher
quality objective values than the Flip algorithms, even within short
time periods.

4.2. Experimental design

To assess and compare the performance of the local search algo-
rithms in Section 4.1, we use these algorithms to optimize Illinois,
Missouri, and Tennessee congressional district plans with respect to
each fairness objective discussed in Section 3.1 (compactness, efficiency
gap, mean-median, and competitiveness) under the constraints dis-
cussed in Section 3.2. First, to examine the trade-off between solution
quality and run time for these algorithms, we perform timed exper-
iments and report the best objective value each algorithm achieves
in 30, 300, 1800, and 3600 s. For each timed experiment with a
particular state, algorithm, and objective, the algorithm starts at the
initial solution, performs iterations until it approximately converges
to a local optimum, then restarts at the same initial solution. The
algorithm repeats this process until the time limit is reached. The
algorithms that converge to a local optimum quickly (e.g., Simple Flip)
will be able to produce more optimized plans than the algorithms that
converge more slowly (e.g., Greedy ReCom). Note that since Sample
ReCom is not an optimization algorithm, it does not converge to a local
optimum; therefore, we simply report the best solution from the sample
it creates within the time limit.

Second, to provide insight into the average performance of each
algorithm, we execute untimed experiments of each algorithm, for
each objective. For each untimed experiment with a particular state,
algorithm, and objective, the algorithm starts at an initial solution, per-
forms iterations until it approximately converges to a local optimum,
then restarts at a different initial solution. The algorithm repeats this
process until it has generated 50 optimized plans. For each algorithm’s
collection of optimized plans, we compare the average run time and
best, worst, and average objective values. We also compare the final
compactness values for each algorithm when the objective is not com-
pactness. Again, Sample ReCom does not converge to a local optimum;
therefore, we exclude Sample ReCom from the untimed experiments.
The rest of this subsection describes the initial solutions we use and
how we assess algorithm convergence.

For the timed experiments, we use the congressional district plans
for Illinois, Missouri, and Tennessee from the 2021 redistricting cycle
as initial solutions. Using GIS software, we obtain a census tract approx-
imation of each plan (shown in Fig. 3). Since the original plans splits
many tracts, we initially assign each split tract to the district which
contains its centroid. No adjustments are needed to maintain majority–
minority districts, while minor adjustments are needed to maintain
contiguity and population balance.

For the untimed experiments, we mimic a random restart procedure
by generating 50 distinct, feasible district plans for each state. Using
multiple initial solutions reveals the degree to which each algorithm
is dependent on the initial solution, thereby assessing the robustness
of each algorithm. To generate these initial plans, we execute Sample
ReCom 50 times for 25 iterations each, starting from the tract ap-
proximation of each state’s current congressional plan. It is possible to
implement a Sample ReCom random restart procedure within the local
search algorithms, but we chose to generate the plans in advance so
that the initial solutions would be consistent across all experiments.

Starting from an initial solution, each algorithm continues until it
10

approximately converges to a local optimum. Convergence is measured
by comparing objective values at successive iterations; if the objective
has not improved by at least 𝜖 units for 𝑁 successive iterations, the
algorithm terminates. Based on preliminary experiments, we set 𝑁 =
10,000 for Simple Flip and SA Flip, 𝑁 = 250 for Greedy Flip with
the compactness and competitive objectives, 𝑁 = 100 for Greedy Flip
with the efficiency gap and mean-median objectives, and 𝑁 = 250
for Simple ReCom, SA ReCom, and Greedy ReCom. We set 𝜖 = 2 for
compactness, 𝜖 = 0.001 for efficiency gap and competitiveness, and
𝜖 = 0.0001 for mean-median. Note that all 𝜖-values in (0, 1) impose
the same convergence requirement for the competitiveness objective
(namely, no improvement for 𝑁 iterations), since this objective only
takes integer values.

5. Results and discussion

Here we present congressional district plans for Illinois, Missouri,
and Tennessee, satisfying the constraints discussed in Section 3.2 and
optimized for the different fairness metrics discussed in Section 3.1. As
described in Section 4.2, we performed both timed experiments and
untimed experiments. All experiments are run on a 3.10 GHz Core i5
2400-CPU machine with 8 GB of RAM. Code and data can be found on
GitHub (https://github.com/kierwynd/Flip_ReCom_LocalSearch).

The timed experiments compare the best objective values each
algorithm produced within time limits of 30, 300, 1800, and 3600 s to
illustrate the potential trade-off between solution quality and run time
for each algorithm. Figs. 4–7 present the best compactness, efficiency
gap, mean-median, and competitiveness values, respectively, that each
algorithm achieved within each time limit for Illinois, Missouri, and
Tennessee. Tables A.4–A.7 in Appendix A report all values used for
these figures.

The untimed experiments evaluate the performance of each algo-
rithm as it generated 50 plans to provide insight into the average
performance of each algorithm; this type of comparison is also useful if
one’s goal is to generate several plans with good fairness values, rather
than a single fair plan. Table 3 reports the average run time per plan
for each algorithm and objective. Figs. 8–11 display the distribution of
compactness, efficiency gap, mean-median, and competitiveness values,
respectively, for the initial 50 plans and the sets of 50 optimized plans
for each algorithm and each state. Then Tables B.8–B.11 in Appendix B
report the average, best, and worst objective values for each set of 50
plans to summarize these distributions.

The results of these experiments convey the following key insights:

• The ReCom algorithms consistently achieved better solutions than
the Flip algorithms for the efficiency gap and competitiveness
objectives across all three states.

• SA Flip occasionally achieved solutions at least as good as the
ReCom algorithms for the compactness and mean-median objec-
tives.

• The ReCom algorithms took substantially longer on average to
converge than the Flip algorithms across all three states.

• SA Flip frequently produced the best solutions out of the three
Flip algorithms.

• SA ReCom and Greedy ReCom tended to produce solutions
marginally better than Simple ReCom.

• The ReCom algorithms performed more consistently across all
three states than the Flip algorithms.

• The ReCom algorithms maintained compactness better than the
Flip algorithms across all three states when the objective was not
compactness.

The rest of this section explains these insights in more detail. Sec-
tion 5.1 compares objective improvement and algorithm run time
for both iteration types, Section 5.2 evaluates the performance of
each algorithm variant, Section 5.3 discusses how algorithm perfor-
mance differs between the three states, and Section 5.4 examines the

compactness of plans optimized for political fairness metrics.
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he average run times (seconds) for each algorithm to generate 50 plans with one of four objectives in the untimed experiments.
State Objective Sample ReCom (Initial Plans) Simple Flip SA Flip Greedy Flip Simple ReCom SA ReCom Greedy ReCom

Illinois Compactness 8.08 6.97 23.17 157.84 368.83 533.23 648.21
Efficiency Gap 8.08 2.06 3.29 26.84 81.71 89.17 221.85
Mean-Median 8.08 1.94 16.43 28.22 223.05 219.15 370.40
Competitiveness 8.08 5.09 28.26 94.65 108.98 195.45 215.34

Missouri Compactness 7.13 2.77 17.46 38.49 179.21 494.30 319.62
Efficiency Gap 7.13 2.16 6.74 6.53 126.57 126.74 230.39
Mean-Median 7.13 2.12 18.33 7.69 142.17 148.62 246.06
Competitiveness 7.13 2.89 9.33 22.15 77.06 132.58 162.18

Tennessee Compactness 5.14 3.28 18.37 37.26 178.39 419.10 291.74
Efficiency Gap 5.14 2.54 7.77 6.71 118.83 123.32 235.03
Mean-Median 5.14 1.74 20.21 4.72 114.75 113.16 216.49
Competitiveness 5.14 3.02 8.55 21.13 67.12 126.13 130.21
ig. 3. Census tract approximations of congressional district plans in Illinois, Missouri, and Tennessee from the 2021 redistricting cycle. The inset for Illinois shows the Chicago
area.
5.1. Comparison of iteration types

For efficiency gap and competitiveness, all ReCom algorithms
yielded better objective values than all Flip algorithms. During the
timed experiments (Figs. 5 and 7), each ReCom algorithm produced an
objective value similar to or better than each Flip algorithm at all time
limits across all three states. During the untimed experiments (Figs. 9
and 11), each ReCom algorithm produced better average efficiency
gap and competitiveness values than each Flip algorithm across each
collection of 50 optimized plans for all three states.

It is difficult to substantially improve the efficiency gap or competi-
tiveness with small changes in district vote-shares from Flip iterations.
As mentioned in Section 3.1.2, the efficiency gap is a measure of
proportionality (specifically, winner’s bonus proportionality); conse-
quently, district plans with excellent efficiency gap values also have
proportional expected seat outcomes. Therefore, while small vote-share
changes can marginally improve the efficiency gap, substantial im-
provements can only result from flipping seats between the two parties
(which is less likely with Flip iterations). By similar reasoning, individ-
ual Flip iterations are less likely to change a non-competitive district
into a competitive district. In contrast, ReCom iterations can make
substantial changes to the boundary between two districts; therefore, a
single ReCom iteration is more likely to flip a seat from one party to the
other or change a district from non-competitive to competitive. Hence,
even though the ReCom algorithms took longer on average to converge
than the Flip algorithms (as shown in Table 3), they were still able to
achieve better efficiency gap and competitiveness values, regardless of
time limits.

In contrast to efficiency gap and competitiveness, the Flip algo-
rithms occasionally produced objective values at least as good as the
ReCom algorithms for compactness and mean-median. The timed ex-
periments (Figs. 4 and 6) show a clearer trade-off between solution
quality and run time, since some Flip algorithms yielded better values
11
than the ReCom algorithms for the shorter time limits. For example,
all three Flip algorithms achieved a better mean-median value within
30 s for Illinois than SA ReCom, Greedy ReCom, and Sample ReCom.
Similarly, SA Flip produced the best compactness value within 30 and
300 s for Missouri and Tennessee. During the untimed experiments
(Figs. 8 and 10), SA Flip frequently yielded average compactness and
mean-median values similar to the ReCom algorithms. However, Simple
Flip and Greedy Flip produced substantially worse average compactness
and mean-median values than SA Flip.

Unlike efficiency gap and competitiveness, improving compactness
or mean-median does not depend on flipping seats from one party to
another or from non-competitive to competitive. Therefore, there is
more potential for a Flip algorithm to substantially improve compact-
ness and mean-median via many small, incremental changes. Hence, a
Flip iteration local search variant (e.g., SA Flip) may be sufficient to
substantially improve these objectives. Since SA Flip converged more
than five times faster than the ReCom algorithms (as shown in Table 3),
it may be preferable to use SA Flip when optimizing compactness and
mean-median.

5.2. Comparison of algorithm variants

Due to their relatively small local search neighborhoods, Flip it-
erations may create solution spaces with numerous low-quality local
optima; hence, Simple Flip and Greedy Flip often produced mediocre
solutions. Greedy Flip also tended to have the longest average run
time out of the three Flip algorithms (as shown in Table 3). Since
simulated annealing allows for better exploration of the solution space
in the presence of low quality local optima, SA Flip frequently achieved
solutions substantially better than Simple Flip and Greedy Flip. During
the timed experiments (Figs. 4–6), SA Flip achieved better objective
values than Simple Flip and Greedy Flip at each time limit for compact-
ness, efficiency gap, and mean-median across all three states. Similarly,
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Fig. 4. Plots showing the best compactness values each algorithm achieves in 30, 300, 1800, and 3600 s for Illinois, Missouri, and Tennessee. For visual clarity, the time limits
on the horizontal axis are spaced uniformly (rather than spaced to scale) and horizontal noise has been added.

Fig. 5. Plots showing the best efficiency gap values each algorithm achieves in 30, 300, 1800, and 3600 s for Illinois, Missouri, and Tennessee. For visual clarity, the time limits
on the horizontal axis are spaced uniformly (rather than spaced to scale) and horizontal noise has been added.

Fig. 6. Plots showing the best mean-median values each algorithm achieves in 30, 300, 1800, and 3600 s for Illinois, Missouri, and Tennessee. For visual clarity, the time limits
on the horizontal axis are spaced uniformly (rather than spaced to scale) and horizontal noise has been added.
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ig. 7. Plots showing the best competitiveness values each algorithm achieves in 30, 300, 1800, and 3600 s for Illinois, Missouri, and Tennessee. For visual clarity, the time limits
on the horizontal axis are spaced uniformly (rather than spaced to scale) and horizontal noise has been added.
ig. 8. Plots showing the compactness values for each algorithm’s set of 50 plans optimized for compactness, for Illinois, Missouri, and Tennessee. The average value for each set
s shown with a black line.
ig. 9. Plots showing the efficiency gap values for each algorithm’s set of 50 plans optimized for efficiency gap, for Illinois, Missouri, and Tennessee. The average value for each
et is shown with a black line.
uring the untimed experiments (Figs. 8–10), SA Flip achieved bet-
er average objective values than Simple Flip and Greedy Flip for
ompactness, efficiency gap, and mean-median across all three states.
or competitiveness (Figs. 7 and 11), Simple Flip frequently produced
alues at least as good as SA Flip in both the timed and untimed exper-
ments, likely because it was allowed to accept moves that maintained
rather than strictly improved) the objective. Since the number of
13

ompetitive districts may not change even with several Flip iterations,
this acceptance rule allowed for better exploration of the solution space.

For the ReCom local search algorithms, SA ReCom and Greedy
ReCom tended to produce slightly better solutions than Simple ReCom.
There are a few scenarios during the timed experiments in which
Simple ReCom produced a better solution than SA ReCom and Greedy
ReCom (e.g., compactness at 30 s for Tennessee, mean-median at 30 s

for Illinois), likely because it tended to converge to an optimal solution
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ig. 10. Plots showing the mean-median values for each algorithm’s set of 50 plans optimized for mean-median, for Illinois, Missouri, and Tennessee. The average value for each
et is shown with a black line.
ig. 11. Plots showing the competitiveness values for each algorithm’s set of 50 plans optimized for competitiveness, for Illinois, Missouri, and Tennessee. The average value for
ach set is shown with a black line.
ig. 12. Plots showing the compactness values for each algorithm’s set of 50 Illinois
lans optimized for mean-median. The average value for each set is shown with a black
ine.

ore quickly (e.g., as demonstrated by the run times for the untimed
xperiments in Table 3). However, during the untimed experiments,
A ReCom and Greedy ReCom frequently achieved marginally better
verage objective values than Simple ReCom.

It is important to note that the typical advantages of simulated
nnealing and greedy algorithms (i.e., better exploration of the solution
pace and the ability to choose better improving moves, respectively)
14
have not resulted in substantially better solutions over time in these Re-
Com experiments compared to simple hill-climbing. Simple ReCom, SA
ReCom, and Greedy ReCom produced similar best values in the timed
experiments after 300 s and similar average values in the untimed
experiments. This similarity likely occurs because the ReCom iteration
already allows for good exploration of the solution space and the ability
to make substantial changes to a plan in a single iteration. Therefore,
in contrast to Flip, these results suggest that the good objective values
obtained by a ReCom local search method are more attributable to the
ReCom iteration than the specific local search variant. Since Simple
ReCom frequently converged to a local optimum faster on average
than SA ReCom and Greedy ReCom (as shown in Table 3), it may be
preferable to use Simple ReCom, especially if the goal is to generate
several good plans.

Although Sample ReCom is a sampling heuristic and not an opti-
mization heuristic, it occasionally produced the best solution for some
time limits (e.g., competitiveness at 300 s for Missouri) or produced
solutions similar to the ReCom local search algorithms (e.g., efficiency
gap at all time limits for all three states) during the timed experiments.
These results further suggest that ReCom’s ability to explore the so-
lution space well can lead to good objective values regardless of the
algorithm variant (i.e., even without explicit optimization). Therefore,
in similar scenarios, it may not be necessary to invoke an optimization
heuristic to obtain good solutions. These results also provide additional
support for the use of Sample ReCom as a random restart procedure
(e.g., as in DeFord et al. (2020)).
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Table A.4
The best compactness values each algorithm achieves in 30, 300, 1800, and 3600 s, for Illinois, Missouri, and Tennessee. The best value across
all algorithms is shown in bold.

State Algorithm Best 𝑓𝑐𝑜𝑚𝑝 in 30 s Best 𝑓𝑐𝑜𝑚𝑝 in 300 s Best 𝑓𝑐𝑜𝑚𝑝 in 1800 s Best 𝑓𝑐𝑜𝑚𝑝 in 3600 s

Illinois Simple Flip 988 983 963 963
SA Flip 869 776 776 776
Greedy Flip 1290 1135 1122 1119
Simple ReCom 831 597 547 547
SA ReCom 1189 633 540 530
Greedy ReCom 860 627 557 556
Sample ReCom 887 744 733 723

Missouri Simple Flip 276 272 270 270
SA Flip 205 196 196 190
Greedy Flip 279 276 274 274
Simple ReCom 240 207 195 195
SA ReCom 230 199 196 192
Greedy ReCom 240 226 217 217
Sample ReCom 292 269 259 240

Tennessee Simple Flip 300 284 284 281
SA Flip 244 227 227 226
Greedy Flip 319 314 309 309
Simple ReCom 265 236 225 223
SA ReCom 277 246 221 220
Greedy ReCom 282 231 226 223
Sample ReCom 322 300 278 269
Table A.5
The best efficiency gap values each algorithm achieves in 30, 300, 1800, and 3600 s, for Illinois, Missouri, and Tennessee. The best value
across all algorithms is shown in bold.

State Algorithm Best 𝑓𝑒𝑔 in 30 s Best 𝑓𝑒𝑔 in 300 s Best 𝑓𝑒𝑔 in 1800 s Best 𝑓𝑒𝑔 in 3600 s

Illinois Simple Flip 0.135 0.135 0.135 0.135
SA Flip 0.082 0.082 0.082 0.081
Greedy Flip 0.136 0.136 0.136 0.136
Simple ReCom 0.016 0.005 0.005 0.004
SA ReCom 0.021 0.010 0.005 0.004
Greedy ReCom 0.004 <0.001 <0.001 <0.001
Sample ReCom 0.014 0.014 0.014 0.014

Missouri Simple Flip 0.184 0.183 0.183 0.183
SA Flip 0.172 0.172 0.172 0.170
Greedy Flip 0.184 0.184 0.184 0.184
Simple ReCom 0.171 0.168 0.018 0.018
SA ReCom 0.175 0.168 0.021 0.021
Greedy ReCom 0.179 0.167 0.022 0.022
Sample ReCom 0.177 0.172 0.031 0.031

Tennessee Simple Flip 0.167 0.167 0.060 0.058
SA Flip 0.153 0.052 0.039 0.038
Greedy Flip 0.167 0.167 0.167 0.167
Simple ReCom 0.037 0.027 0.025 0.023
SA ReCom 0.038 0.026 0.025 0.023
Greedy ReCom 0.032 0.026 0.024 0.024
Sample ReCom 0.045 0.032 0.032 0.032
.3. Comparison of states

The ReCom algorithms had fewer inconsistencies in performance
cross all three states than the Flip algorithms. During the timed
xperiments, Greedy ReCom produced compactness values similar to
imple ReCom and SA ReCom after 300 s for Illinois and Tennessee,
ut not for Missouri (Fig. 4); however, in the untimed experiments for
issouri, Greedy ReCom did produce compactness values similar to

imple ReCom and SA ReCom (Fig. 8). Therefore, this inconsistency is
ikely attributable to the initial Missouri plan for the timed experiments
Fig. 3(b)).

The Flip algorithms had inconsistencies in both the timed and
ntimed experiments. SA Flip achieved compactness values that were
ither the best or similar to the best in the timed experiments for
issouri and Tennessee (Fig. 4); however, SA Flip did not achieve the

est compactness values for Illinois, likely because the district shapes in
he initial Illinois plan (Fig. 3(a)) are so convoluted. The inconsistencies
n efficiency gap values that Simple Flip and SA Flip achieved during
he timed experiments (Fig. 5) also likely result from the initial plans;
15
as the untimed experiments for efficiency gap show (Fig. 9), the Flip
algorithms produced distributions of efficiency gap values quite similar
to the initial plans’ distribution. Lastly, while SA Flip achieved excellent
average mean-median values in the untimed experiments for Illinois
and Missouri, it did not in Tennessee (Fig. 10). Since these experiments
used several initial plans, this inconsistency may be due to Tennessee’s
census geography.

It is also important to note that all algorithms failed to substan-
tially improve the efficiency gap in Missouri within 300 s during
the timed experiments (Fig. 5(b)); similarly, all algorithms failed to
substantially improve the average efficiency gap during the untimed
experiments (Fig. 9(b)). This phenomenon is likely due to Missouri’s
unique political geography. Population clustering, voter concentration,
and voter location can affect the fairness values possible for a particular
state and whether a local search algorithm is able to readily achieve
these values. In Missouri, Democratic voters are concentrated in the
Kansas City and St. Louis areas. Additionally, the areas around St.
Louis with high concentrations of Democratic voters also have a large
Black/African American population; hence, Missouri’s one majority–

minority district (as described in Section 3.2.2) is often packed with
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Table A.6
The best mean-median values each algorithm achieves in 30, 300, 1800, and 3600 s, for Illinois, Missouri, and Tennessee. The best value across
all algorithms is shown in bold.

State Algorithm Best 𝑓𝑚𝑚 in 30 s Best 𝑓𝑚𝑚 in 300 s Best 𝑓𝑚𝑚 in 1800 s Best 𝑓𝑚𝑚 in 3600 s

Illinois Simple Flip 0.0125 0.0082 0.0048 0.0048
SA Flip <0.0001 <0.0001 <0.0001 <0.0001
Greedy Flip 0.0072 0.0072 0.0072 0.0072
Simple ReCom 0.0009 <0.0001 <0.0001 <0.0001
SA ReCom 0.0139 <0.0001 <0.0001 <0.0001
Greedy ReCom 0.0185 <0.0001 <0.0001 <0.0001
Sample ReCom 0.0201 0.0171 0.0093 0.0008

Missouri Simple Flip 0.0133 <0.0001 <0.0001 <0.0001
SA Flip <0.0001 <0.0001 <0.0001 <0.0001
Greedy Flip 0.0181 0.0181 0.0181 0.0181
Simple ReCom 0.0121 <0.0001 <0.0001 <0.0001
SA ReCom 0.0002 <0.0001 <0.0001 <0.0001
Greedy ReCom 0.0102 <0.0001 <0.0001 <0.0001
Sample ReCom 0.0094 0.0008 <0.0001 <0.0001

Tennessee Simple Flip 0.0295 0.0276 0.0275 0.0274
SA Flip 0.0188 <0.0001 <0.0001 <0.0001
Greedy Flip 0.0262 0.0262 0.0262 0.0262
Simple ReCom 0.0226 <0.0001 <0.0001 <0.0001
SA ReCom 0.0101 <0.0001 <0.0001 <0.0001
Greedy ReCom <0.0001 <0.0001 <0.0001 <0.0001
Sample ReCom 0.0273 0.0024 <0.0001 <0.0001
Table A.7
The best competitiveness values each algorithm achieves in 30, 300, 1800, and 3600 s, for Illinois, Missouri, and Tennessee. The best value
across all algorithms is shown in bold.

State Algorithm Best 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 in 30 s Best 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 in 300 s Best 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 in 1800 s Best 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 in 3600 s

Illinois Simple Flip 3 4 4 5
SA Flip 3 4 5 5
Greedy Flip 1 2 2 2
Simple ReCom 4 7 7 7
SA ReCom 5 5 8 8
Greedy ReCom 6 7 7 8
Sample ReCom 3 5 6 6

Missouri Simple Flip 1 2 2 2
SA Flip 1 2 2 2
Greedy Flip 1 1 1 1
Simple ReCom 3 3 3 3
SA ReCom 3 3 3 3
Greedy ReCom 2 3 3 4
Sample ReCom 2 3 3 4

Tennessee Simple Flip 1 1 2 2
SA Flip 0 1 2 2
Greedy Flip 0 0 0 0
Simple ReCom 1 4 4 4
SA ReCom 2 2 2 3
Greedy ReCom 1 2 2 4
Sample ReCom 2 2 2 2
emocratic voters. Therefore, the contiguity, compactness, and Voting
ights Act constraints reduce the number of feasible district plans for
issouri with proportional expected seat outcomes. See Dobbs et al.

2023) for more information on Missouri’s political geography.

.4. Compactness of plans optimized for political fairness

Here we examine how well the algorithms maintained compactness
uring the untimed experiments when the objective was a political
airness metric. As discussed in Section 3.2, Flip iterations can create
ractal-like district shapes when the objective is not compactness, while
eCom iterations naturally favor compact districts. As an example,
ig. 12 shows the compactness values for the 50 Illinois plans optimized
ith respect to mean-median during the untimed experiments. The

hree Flip algorithms produced plans with worse average compactness
han the initial plans; their compactness values are quite close to the
llowed thresholds. In contrast, the ReCom algorithms produced plans
ith better average compactness than the initial plans. Tables B.9–
16

.11 in Appendix B report the average compactness values for each
algorithm’s set of plans optimized for efficiency gap, mean-median,
and competitiveness, respectively, during the untimed experiments.
For these experiments, the ReCom algorithms always produced plans
with better average compactness than the Flip algorithms. Therefore,
in the scenarios for which a Flip algorithm produced political fairness
values close to the ReCom algorithms (e.g., SA Flip with a mean-median
objective for Illinois and Missouri), the superior compactness values
that the ReCom algorithms produced can be used to further distinguish
the ReCom plans from the Flip plans. Since compact districts are
desirable in practice, producing superior compactness values elevates
the solution quality of the ReCom plans.

6. Conclusion

Optimization methods have the potential to increase transparency
and reduce political bias in the political redistricting process. In this
study, we evaluate the performance of several local search optimization
heuristics for political redistricting that use ReCom or Flip iterations.
We optimize congressional district plans for Illinois, Missouri, and
Tennessee with respect to four common fairness objectives.
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Table B.8
The average run time and the average, best, and worst compactness values for each set of 50 plans optimized for compactness.

State Algorithm Average run time (s) Average 𝑓𝑐𝑜𝑚𝑝 value Best 𝑓𝑐𝑜𝑚𝑝 value Worst 𝑓𝑐𝑜𝑚𝑝 value

Illinois Sample ReCom (Initial Plans) 8.08 1095.86 903 1271
Simple Flip 6.97 742.02 630 873
SA Flip 23.17 648.58 581 737
Greedy Flip 157.84 837.86 722 926
Simple ReCom 368.83 616.70 551 742
SA ReCom 533.23 568.96 524 677
Greedy ReCom 648.21 573.72 526 714

Missouri Sample ReCom (Initial Plans) 7.13 368.04 316 429
Simple Flip 2.77 269.78 230 321
SA Flip 17.46 230.68 188 275
Greedy Flip 38.49 274.56 235 340
Simple ReCom 179.22 224.82 184 262
SA ReCom 494.30 211.64 190 246
Greedy ReCom 319.62 218.66 180 263

Tennessee Sample ReCom (Initial Plans) 5.14 381.5 319 449
Simple Flip 3.28 272.18 231 311
SA Flip 18.39 235.70 214 276
Greedy Flip 37.26 277.96 232 329
Simple ReCom 178.39 235.88 219 261
SA ReCom 419.10 227.06 212 238
Greedy ReCom 291.75 228.12 215 256
able B.9
he average run time, the average, best, and worst efficiency gap values, and the average compactness values for each set of 50 plans optimized for efficiency gap.
State Algorithm Average run time (s) Average 𝑓𝑒𝑔 value Best 𝑓𝑒𝑔 value Worst 𝑓𝑒𝑔 value Average 𝑓𝑐𝑜𝑚𝑝 value

Illinois Sample ReCom (Initial Plans) 8.08 0.036 0.016 0.108 1095.86
Simple Flip 2.06 0.031 0.014 0.104 1314.00
SA Flip 3.29 0.025 0.015 0.083 1306.32
Greedy Flip 26.84 0.031 0.015 0.105 1175.46
Simple ReCom 81.71 0.018 0.010 0.022 937.56
SA ReCom 89.17 0.018 0.010 0.022 944.54
Greedy ReCom 221.85 0.016 0.009 0.021 928.50

Missouri Sample ReCom (Initial Plans) 7.13 0.190 0.174 0.306 368.04
Simple Flip 2.16 0.185 0.171 0.304 440.76
SA Flip 6.74 0.175 0.029 0.184 440.16
Greedy Flip 6.53 0.182 0.031 0.305 437.82
Simple ReCom 126.57 0.163 0.022 0.173 363.12
SA ReCom 126.74 0.166 0.021 0.176 358.56
Greedy ReCom 230.39 0.159 0.021 0.173 355.24

Tennessee Sample ReCom (Initial Plans) 5.14 0.075 0.042 0.166 381.5
Simple Flip 2.54 0.062 0.038 0.165 456.12
SA Flip 7.77 0.049 0.031 0.154 455.16
Greedy Flip 6.71 0.068 0.038 0.165 450.36
Simple ReCom 118.83 0.029 0.023 0.038 396.02
SA ReCom 123.32 0.029 0.023 0.038 393.24
Greedy ReCom 235.03 0.027 0.022 0.034 402.38
The results show that Simple ReCom, SA ReCom, and Greedy Re-
om yielded excellent values for all four objectives, across all three
edistricting instances. Although SA ReCom and Greedy ReCom tended
o produce slightly better values than Simple ReCom, the difference was
ot substantial. SA Flip occasionally achieved similar or better values
han the ReCom local search variants, depending on the objective and
he redistricting instance. In contrast, Simple Flip and Greedy Flip
requently failed to substantially improve the objectives.

The ReCom local search variants are computationally slower than
he Flip local search variants. Therefore, for some objectives (e.g., com-
actness, mean-median), SA Flip produced a better solution than the
eCom algorithms within short time periods. For other objectives
e.g., efficiency gap, competitiveness), the ReCom algorithms achieved
etter solutions, even within short time periods.

Hence, the most useful local search algorithm for redistricting de-
ends on one’s goals. If the goal is to ascertain objective value bounds
or a particular redistricting instance (e.g., by using local search as a
euristic warm-start for exact optimization), then SA ReCom or Greedy
eCom would be useful since they tended to converge to the best
olutions (regardless of objective or instance). If time is limited, SA Flip
an occasionally provide a better solution than the ReCom algorithms
17
within a short time period for some objectives (e.g., compactness,
mean-median). If the goal is to generate a diverse collection of plans
with good objective values in a reasonable amount of time (e.g., for a
state redistricting committee), Simple ReCom offers a balance between
solution quality and run time; similarly, a ReCom-Flip hybrid method
(e.g., SA Flip with a Sample ReCom random restart procedure) could
quickly generate good solutions.

In general, the use of ReCom iterations within an optimization
framework remains underexplored. While this study examines how Re-
Com iterations perform in different local search variants and compare
to Flip iterations within a heuristic optimization framework, it would
also be useful to compare a ReCom local search method to redistricting
heuristics other than local search (e.g., Gurnee and Shmoys (2021)
and Swamy et al. (2022)). It is also possible that other aspects of a
ReCom iteration, such as the selection of a candidate bipartition or the
bipartition method itself, could be examined and specifically tailored
to one or more redistricting objectives. For example, Clelland et al.
(2022) adjust the randomized edge weights for Kruskal’s algorithm to
favor spanning trees with more intra-county edges in ReCom iterations;
it may be possible to similarly adjust edge weights to make each
candidate bipartition more likely to improve a chosen objective, thus
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able B.10
he average run time, the average, best, and worst mean-median values, and the average compactness values for each set of 50 plans optimized for mean-median.
State Algorithm Average run time (s) Average 𝑓𝑚𝑚 value Best 𝑓𝑚𝑚 value Worst 𝑓𝑚𝑚 value Average 𝑓𝑐𝑜𝑚𝑝 value

Illinois Sample ReCom (Initial Plans) 8.08 0.0294 0.0017 0.0537 1095.86
Simple Flip 1.94 0.0138 <0.0001 0.0407 1272.22
SA Flip 16.43 0.0022 <0.0001 0.0198 1313.84
Greedy Flip 28.22 0.0100 <0.0001 0.0391 1217.58
Simple ReCom 223.05 0.0013 <0.0001 0.0202 1011.84
SA ReCom 219.15 0.0011 <0.0001 0.0179 984.86
Greedy ReCom 370.40 0.0005 <0.0001 0.0133 1009.68

Missouri Sample ReCom (Initial Plans) 7.13 0.0246 0.0053 0.0391 368.04
Simple Flip 2.12 0.0155 <0.0001 0.0341 441.06
SA Flip 18.33 0.0003 <0.0001 0.0058 439.82
Greedy Flip 7.69 0.0071 <0.0001 0.0265 440.52
Simple ReCom 142.17 0.0001 <0.0001 0.0045 395.02
SA ReCom 148.62 0.0002 <0.0001 0.0051 384.64
Greedy ReCom 246.06 0.0002 <0.0001 0.0059 388.24

Tennessee Sample ReCom (Initial Plans) 5.14 0.0432 0.0066 0.0705 381.5
Simple Flip 1.74 0.0325 <0.0001 0.0523 444.16
SA Flip 20.21 0.0107 <0.0001 0.0225 456.36
Greedy Flip 4.72 0.0297 <0.0001 0.0457 431.80
Simple ReCom 114.75 0.0009 <0.0001 0.0173 411.20
SA ReCom 113.16 0.0007 <0.0001 0.0160 409.98
Greedy ReCom 216.49 0.0006 <0.0001 0.0130 413.42
able B.11
he average run time, the average, best, and worst competitiveness values, and the average compactness values for each set of 50 plans optimized for competitiveness.
State Algorithm Average run time (s) Average 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 Value Best 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 Value Worst 𝑓𝑐𝑚𝑝𝑡𝑡𝑣 Value Average 𝑓𝑐𝑜𝑚𝑝 Value

Illinois Sample ReCom (Initial Plans) 8.08 2.46 6 1 1095.86
Simple Flip 5.09 3.15 6 2 1314.58
SA Flip 28.26 3.18 6 1 1314.35
Greedy Flip 94.65 2.74 6 1 1189.12
Simple ReCom 108.98 5.8 8 3 891.82
SA ReCom 195.45 6.12 8 4 883.50
Greedy ReCom 215.34 6.12 8 4 882.14

Missouri Sample ReCom (Initial Plans) 7.13 1.50 3 0 368.04
Simple Flip 2.89 1.82 3 1 440.90
SA Flip 9.33 1.72 3 1 440.70
Greedy Flip 22.15 1.52 3 0 436.68
Simple ReCom 77.06 3.00 4 2 353.72
SA ReCom 132.58 3.02 4 3 359.60
Greedy ReCom 162.18 3.1 4 3 359.56

Tennessee Sample ReCom (Initial Plans) 5.14 0.42 2 0 381.5
Simple Flip 3.02 0.68 2 0 456.58
SA Flip 8.55 0.61 2 0 456.65
Greedy Flip 21.13 0.42 2 0 451.94
Simple ReCom 67.12 1.98 2 1 380.24
SA ReCom 126.13 2.08 3 2 377.68
Greedy ReCom 130.21 2.06 4 1 377.44
educing the number of ReCom iterations local search takes to converge
o a local optimum. Another logical extension for any redistricting
ptimization method is to adapt it for multi-criteria optimization to
etter incorporate multiple competing stakeholder preferences.
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See Tables A.4–A.7.
Appendix B. Tables for untimed experiments

See Tables B.8–B.11.
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